

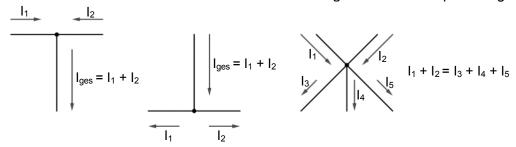
Elektrizität OST

Datum:

Name, Klasse:

EL06 Knotenregel

Material:


- 2x Widerstand,
 120 Ω
- 1x Widerstand 1 kΩ
- 3x LED identisch!
- Multimeter
- Batterie 4,5 V

Ziel des Versuchs:

Kennenlernen und Überprüfen eines einfachen Zusammenhanges zwischen den Stromstärken, die an Stromverzweigungen (Knoten) eines Stromkreises auftreten.

Theorie:

Aufgrund der Ladungserhaltung ($Q = l \cdot t$) ist die Summe der zufließenden Ströme in einem Knoten stets gleich groß wie die Summe der abfließenden Ströme wie die folgenden drei Beispiele zeigen:

Durchführung:

- a) Baue die Schaltung mit drei Widerständen laut Abbildung (siehe ganz oben) auf!
- b) Miss die Klemmspannung an der Batterie und notiere diese Gesamtspannung in der Tabelle!
- c) Die Strommessung soll nacheinander jeweils an den gekennzeichneten Stellen 1 4 durchgeführt werden, wobei an der Stelle 4 die Gesamtstromstärke gemessen wird (siehe Abbildung).
- d) Erstelle eine Fotoserie des Versuches, welche die vier Strommessungen zeigt!

Messwerte:

s	Gesamt- pannung in V	Stromstärke I ₁ in mA	Stromstärke <i>I</i> ₂ in mA	Stromstärke <i>I</i> ₃ in mA	Gesamtstromstärke / in mA

Protokoll:

- Messwerttabelle; Rechnerische Überprüfung der Knotenregel; Fotoserie
- Wie verhalten sich die Leuchtstärken der LEDs?
- Berechnung der Abweichung der Knotenregel in %!
- Zusammenfassung der beiden nun bekannten Zusammenhänge Maschen- und Knotenregel:

In einer Masche gilt für die Spannungen ... In einem Knoten gilt für die Ströme ...